Sains Malaysiana 53(6)(2024): 1295-1307

http://doi.org/10.17576/jsm-2024-5306-06

 

An Ultrasensitive Electrochemical Enzymatic Urea Biosensor Based on Aniline/N-Butyl Acrylate Conducting Polymer-Modified Screen-Printed Electrode

(Biosensor Urea Elektrokimia Enzimatik Ultrasensitif Berasaskan Elektrod Bercetak Skrin Terubah Suai Polimer Berkonduksi Anilina/N-Butil Akrilat)

 

ALIZAR ULIANAS1,*, SHARINA ABU HANIFAH2, LING LING TAN3, NORMAZIDA ROZI2, LEE YOOK HENG2, INDANG DEWATA1, MAWARDI MAWARDI1, YULKIFLI1, RAHADIAN ZAINUL1, ELSA YUNIARTI1, OKTA SURYANI1 & TRISNA KUMALA SARI1

 

1Biosensor & Chemical Sensor Research Centre, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Padang, Jl. Prof. Hamka, Padang 25131, Indonesia

2Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 8 September 2023/Diterima: 17 Mei 2024

 

Abstract

An enzymatic electrochemical biosensor for urea detection was developed using the succinimide-modified aniline/n-butyl acrylate (nBA) conducting polymer. This aniline/nBA conducting polymer was synthesized by photopolymerization with the succinimide moiety incorporated during the photocuring procedure. The urease enzyme originating from Jack beans was chemically grafted on the succinimide-functionalized aniline/nBA conducting polymer, which was attached to a screen-printed carbon paste electrode (SPE). The enzymatic hydrolysis of urea by the urease electrode diminished the voltammetric biosensor response as a result of the cascaded chemical reaction between the enzymatically hydrolyzed hydroxide (OH-) ion and the K3Fe(CN)6 redox species that generating the side products (Fe(OH)3, CN- ion, and KCN), which impeded the electron transfer of the redox mediator at electrode-electrolyte interface. In view of the amount of side products produced was proportional to the urea concentration associated in the enzymatic reaction with the immobilized urease enzymes, this has allowed the proposed enzymatic biosensor to demonstrate an inverse sensitivity concept of detecting urea concentration in an ultrasensitive manner. The electron transfer rate constant (k) of the urease electrode based on aniline/nBA hybrid material at the electrode-electrolyte interface was determined at 5.374×10-5 cm s-1. The linear response range of the enzymatic urea biosensor was obtained from 10-10 mM to 1×10-1 mM (R2=0.9834) by differential pulse voltammetry (DPV) with a limit of detection of 4.72×10-11 mM at pH 5.0 and enzymatic hydrolysis time of 30 min. The voltammetric urea biosensor response showed good reproducibility with a promising relative standard deviation (RSD) acquired at 5.0% (n=9). The ultra-high sensitivity performance of the developed enzymatic biosensor based on aniline/nBA conducting polymer towards determination of urea concentrations at low levels has demonstrated superior performance across previously reported electrochemical urea biosensors based on various nanostructured conducting materials.

 

Keywords: Conducting polymer; electrochemical transducer; succinimide-modified polymer; urea biosensor

 

Abstrak

Biosensor elektrokimia enzimatik untuk pengesanan urea telah dibangunkan menggunakan suksinimida terubah suai polimer berkonduksi anilina/n-butil akrilat (nBA). Polimer berkonduksi anilina/nBA ini adalah disintesis melalui pempolimeran foto dengan bahagian suksinimida digabungkan semasa prosedur pempolimeran foto. Enzim urease yang berasal daripada kacang Jack telah diikat secara kimia dengan kumpulan berfungsi suksinimida pada polimer berkonduksi anilina/nBA yang dipegun pada elektrod karbon bercetak skrin (SPE). Hidrolisis enzimatik urea oleh elektrod urease mengurangkan rangsangan biosensor voltammetrik daripada tindak balas kimia melata antara ion hidroksida (OH-) terhidrolisis secara enzimatik dan spesies redoks K3Fe(CN)6 yang menghasilkan produk sampingan, (Fe(OH)3, ion CN- dan KCN), yang menghalang pemindahan elektron pengantara redoks pada antara muka elektrod-elektrolit. Memandangkan jumlah produk sampingan yang dihasilkan adalah berkadaran dengan kepekatan urea yang terlibat dalam tindak balas enzimatik dengan enzim urease pegun, ini telah membenarkan biosensor enzim yang dicadangkan untuk menunjukkan konsep kepekaan songsang untuk mengesan kepekatan urea secara ultrasensitif. Pemalar kadar pemindahan elektron (k) elektrod urease berasaskan bahan hibrid anilina/nBA pada antara muka elektrod-elektrolit diperoleh pada 5.374×10-5 cm s-1. Julat rangsangan linear biosensor urea enzimatik diperoleh daripada 1×10-10 mM hingga 1×10-1 mM (R2=0.9834) dengan kaedah voltammetri denyutan pembeza (DPV) dengan had pengesanan 4.72×10-11 mM pada pH 5.0 dan masa hidrolisis enzimatik selama 30 min. Rangsangan biosensor urea voltammetrik menunjukkan kebolehulangan yang baik dengan sisihan piawai relatif (RSD) yang menggalakkan diperoleh pada 5.0% (n=9). Prestasi kepekaan ultra tinggi biosensor enzimatik yang dibangunkan berasaskan polimer berkonduksi anilina/nBA terhadap penentuan kepekatan urea pada kepekatan rendah telah menunjukkan prestasi unggul merentas biosensor urea elektrokimia yang dilaporkan sebelum ini berasaskan pelbagai bahan berkonduksi berstruktur nano.

 

Kata kunci: Biosensor urea; polimer berkonduksi; polimer terubah suai suksinimida; transduser elektrokimia

 

RUJUKAN

Abi Munajad, Cahyo Subroto & Suwarno. 2018. Fourier Transform Infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2): 364. https://doi.org/10.3390/en11020364

Achmann, S., Hämmerle, M. & Moos, R. 2008. Amperometric enzyme-based biosensor for direct detection of formaldehyde in the gas phase: Dependence on electrolyte composition. Electroanalysis 20(4): 410- 417. https://doi.org/10.1002/elan.200704069

Ahmad, M.S., Isa, I.M., Hashim, N., Saidin, M.I., Si, S.M., Zainul, R., Ulianas, A. & Mukdasai, S. 2019. Zinc layered hydroxide-sodium dodecyl sulphate-isoprocarb modified multiwalled carbon nanotubes as sensor for electrochemical determination of dopamine in alkaline medium. International Journal of Electrochemical Science 14(9): 9080-9091. https://doi.org/10.20964/2019.09.54

Alizar Ulianas, Lee Yook Heng & Musa Ahmad. 2011. A biosensor for urea from succinimide-modified acrylic microspheres based on reflectance transduction. Sensors 11(9): 8323-8338. https://doi.org/10.3390/s110908323

Alizar Ulianas, Lee Yook Heng, Musa Ahmad, Han-Yih Lau, Zamri Ishak & Tan Ling Ling. 2014. A regenerable screen-printed dna biosensor based on acrylic microsphere-gold nanoparticle composite for genetically modified soybean determination. Sensors and Actuators, B: Chemical 190: 694-701. https://doi.org/10.1016/j.snb.2013.09.040

Ansari, R. & Keivani, M.B. 2006. Polyaniline conducting electroactive polymers thermal and environmental stability studies. E-Journal of Chemistry 3(4): 202-217. https://doi.org/10.1155/2006/395391

Bozgeyik, İ., Şenel, M., Çevik, E. & Abasıyanık, M.F. 2011. A novel thin film amperometric urea biosensor based on urease-immobilized on poly (N-Glycidylpyrrole-Co-Pyrrole). Current Applied Physics 11: 1083-1088. https://doi.org/10.1016/j.cap.2011.01.041

Chen, K., Song, S. & Xue, D. 2014. An ionic aqueous pseudocapacitor system: Electroactive ions in both a salt electrode and redox electrolyte. RSC Advances 4(44): 23338-23343. https://doi.org/10.1039/c4ra03037k

Das, G. & Yoon, H.H. 2015. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite. Int. J. Nanomedicine 10(Spec Iss): 55-66. doi: 10.2147/IJN.S88315

Dervisevic, M. & Nyangwebah, J.N. 2017. Development of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT bio-nanocomposite film. Sensors and Actuators B: Chemical 246: 920-926. https://doi.org/10.1016/j.snb.2017.02.122

Dervisevic, M., Dervisevic, E. & Şenel, M. 2017. Design of amperometric urea biosensor based on MWCNT/Urease. Sensors & Actuators: B. Chemical 254: 93-101. https://doi.org/10.1016/j.snb.2017.06.161

Emami Meibodi, A.S. & Haghjoo, S. 2014. Amperometric urea biosensor based on covalently immobilized urease on an electrochemically polymerized film of polyaniline containing MWCNTs. Synthetic Metals 194: 1-6. https://doi.org/10.1016/j.synthmet.2014.04.009

Ertell, K. 2006. A review of toxicity and use and handling considerations for guanidine, guanidine hydrochloride, and urea. Pacific Northwest National Laboratory. U.S. Department of Energy.

Fanjul-Bolado, P., Hernández-Santos, D., Lamas-Ardisana, P.J., Martín-Pernía, A. & Costa-García, A. 2008. Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochimica Acta 53(10): 3635-3642. https://doi.org/10.1016/j.electacta.2007.12.044

Farzaneh Shalileh, Hossein Sabahi, Mohammad Golbashy, Mehdi Dadmehr & Morteza Hosseini. 2023. A simple smartphone-assisted paper-based colorimetric biosensor for the detection of urea adulteration in milk based on an environment-friendly pH-sensitive nanocomposite. Analytica Chimica Acta 1284: 341935. https://doi.org/10.1016/j.aca.2023.341935

Goldstein, E.L. & Van de Mark, M.R. 1982. Electrode cleaning and anion effects on Ks for K3Fe(CN)6 couple. Electrochimica Acta 27(8): 1079-1085. https://doi.org/10.1016/0013-4686(82)80113-8

Hao, W., Das, G. & Yoon, H.H. 2015. Fabrication of an amperometric urea biosensor using urease and metal catalysts immobilized by a polyion complex. Journal of Electroanalytical Chemistry. https://doi.org/10.1016/j.jelechem.2015.03.015

Haslinda Abdul Hamid, Panapan Kunakornwattana, Norain Isa & Khairunisak Abdul Razak. 2023. Sensitive and selective detection of chloroform by current-voltage using ZnO nanorods modified electrode. Sains Malaysiana 52(4): 1173-1188. https://doi.org/10.17576/jsm-2023-5204-11

Hassan, R.Y.A., Kamel, A.M., Hashem, M.S., Hassan, H.N.A. & Abd El-Ghaffar, M.A. 2018. A new disposable biosensor platform : Carbon nanotube/poly (o-Toluidine) nanocomposite for direct biosensing of urea. Journal of Solid State Electrochemistry 22: 1817-1823.

Kuo, P-Y., Dong, Z-X. & Chen, Y-Y. 2021. The hysteresis reduction approach for urea biosensor modified by silver nanoparticles. IEEE Transactions on Nanotechnology 20: 311-320.

Luo, J., Sam, A., Hu, B., DeBruler, C., Wei, X., Wang, W. & Liu, T.L. 2017. Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries. Nano Energy 42: 215-221. https://doi.org/10.1016/j.nanoen.2017.10.057

Mello, H.J.N.P.D. & Mulato, M. 2020. Enzymatically functionalized polyaniline thin films produced with one-step electrochemical immobilization and its application in glucose and urea potentiometric biosensors. Biomedical Microdevices 22: 22.

Navas Díaz, A., Ramos Peinado, M.C. & Torijas Minguez, M.C. 1998. Sol-gel horseradish peroxidase biosensor for hydrogen peroxide detection by chemiluminescence. Analytica Chimica Acta 363(2-3): 221-227. https://doi.org/10.1016/S0003-2670(98)00080-4

Nicholson, R.S. 1965. Some examples of the numerical solution of nonlinear integral equations. Analytical Chemistry 37(6): 667-671. https://doi.org/10.1021/ac60225a009

Noor Izaanin Ramli, Lee Yook Heng & Ling Ling Tan. 2022. A simple potentiometric biosensor based on carboxylesterase for the analysis of aspartame. Sains Malaysiana 51(9): 2913-2924. https://doi.org/10.17576/jsm-2022-5109-14

Noviany Noviany, M. Hanif Amrulloh, Mohamad Rafi, Bambang Irawan, Wisnu Ananta Kusuma, Sutopo Hadi, R. Supriyanto, Risa Nofiani, M. Hazwan Hussin & Suripto Dwi Yuwono. 2023. FTIR-based metabolomics for characterization of antioxidant activity of different parts of Sesbania grandiflora plant. Sains Malaysiana 52(1): 165-174. https://doi.org/10.17576/jsm-2023-5201-13

Nurashikin Abd Azis, Illyas Isa, Norhayati Hashim, Mohamad Syahrizal Ahmad & Siti Nur. 2019. Voltammetric determination of bisphenol a in the presence of uric acid using a Zn /Al-LDH-QM modified MWCNT paste electrode. International Journal of Electrochemical Science 14(11): 10607-10621. https://doi.org/10.20964/2019.11.46

Öndeş, B., Akpinar, F., Uygun, M., Muti, M. & Uygun, D.A. 2020. High stability potentiometric urea biosensor based on enzyme attached nanoparticles. Microchemical Journal 2020: 105667. https://doi.org/10.1016/j.microc.2020.105667.

Pibarot, P. & Pilard, S. 2012. Analysis of urea in petfood matrices: Comparison of spectro-colorimetric, enzymatic and liquid chromatography electrospray ionization high resolution mass spectrometry methods. American Journal of Analytical Chemistry 3(9): 613-621. https://doi.org/10.4236/ajac.2012.39080

Qin, Y. & Cabral, J.M.S. 2002. Review properties and applications of urease. Biocatalysis and Biotransformation 20(1): 1-14. https://doi.org/10.1080/10242420210154

Rahmanian, R. & Mozaffari, S.A. 2014. Development of novel amperometric urea biosensor based on Fc-PAMAM and MWCNT bio-nanocomposite fil. Sensors & Actuators: B. Chemical 246: 920-926. https://doi.org/10.1016/j.snb.2014.10.129

Rajesh, Bisht, V., Takashima, W. & Kaneto, K. 2005. An amperometric urea biosensor based on covalent immobilization of urease onto an electrochemically prepared copolymer poly(N-3-aminopropyl pyrrole-co-pyrrole) film. Biomaterials 26(17): 3683-3690. https://doi.org/10.1016/j.biomaterials.2004.09.024

Sanko, V., Şenocak, A., Tümay, S.O. & Demirbas, E. 2023. A novel comparative study for electrochemical urea biosensor design: Effect of different ferrite nanoparticles (MFe2O4, M: Cu, Co, Ni, Zn) in urease immobilized composite system. Bioelectrochemistry 149: 108324. https://doi.org/10.1016/j.bioelechem.2022.108324

Shukla, S.K., Mishra, A.K., Mamba, B.B. & Arotiba, O.A. 2014. Enzyme and microbial technology zirconia-poly (propylene imine) dendrimer nanocomposite based electrochemical urea biosensor. Enzyme and Microbial Technology 66: 48-55. https://doi.org/10.1016/j.enzmictec.2014.08.003

Siti Veren Joana Sury, Alizar Ulianas & Syamsi Aini. 2021. Synthesis of conducting polyaniline with photopolymerization method and characterization. Journal of Physics: Conference Series 1788: 012004. https://doi.org/10.1088/1742-6596/1788/1/012004

Štikoniene, O., Ivanauskas, F. & Laurinavicius, V. 2010. The influence of external factors on the operational stability of the biosensor response. Talanta 81(4-5): 1245-1249. https://doi.org/10.1016/j.talanta.2010.02.016

Sun, M., Ma, X.X., Yao, Q.X., Wang, R.C., Ma, Y.X., Feng, G., Shang, J.X., Xu, L. & Yang, Y.H. 2011. GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar. Energy and Fuels 25(3): 1140-1145. https://doi.org/10.1021/ef101610z

Waware, U.S., Hamouda, A.M.S. & Majumdar, D. 2020. Synthesis, characterization and physicochemical studies of copolymers of aniline and 3-nitroaniline. Polymer Bulletin 77(9): 4469-4488. https://doi.org/10.1007/s00289-019-02957-y

 

*Pengarang untuk surat-menyurat; email: alizarulianas@fmipa.unp.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya